Advanced Electrical Machines and Machine-Based Systems for Electric and Hybrid Vehicles
نویسندگان
چکیده
The paper presents a number of advanced solutions on electric machines and machine-based systems for the powertrain of electric vehicles (EVs). Two types of systems are considered, namely the drive systems designated to the EV propulsion and the power split devices utilized in the popular series-parallel hybrid electric vehicle architecture. After reviewing the main requirements for the electric drive systems, the paper illustrates advanced electric machine topologies, including a stator permanent magnet (stator-PM) motor, a hybrid-excitation motor, a flux memory motor and a redundant motor structure. Then, it illustrates advanced electric drive systems, such as the magnetic-geared in-wheel drive and the integrated starter generator (ISG). Finally, three machine-based implementations of the power split devices are expounded, built up around the dual-rotor PM machine, the dual-stator PM brushless machine and the magnetic-geared dual-rotor machine. As a conclusion, the development trends in the field of electric machines and machine-based systems for EVs are summarized.
منابع مشابه
A Novel Approach to Design the Dual Rotor Switched Reluctance Motor Based Electric Vehicles
Electric and hybrid electric vehicles are attractive candidates for sustainable transportation due to its higher efficiency and low emission. The critical choice on the electric motors is its capability of motoring and regenerative braking characteristics. Switched reluctance machines are viable candidate as with proper control and extended constant power range operation replacing the multi-gea...
متن کاملA short overview of the electrical machines control based on Flatness-technique
Optimal linear controllers and high computational non-linear controllers are normally applied to control the nonlinear systems. Flatness control method is a control technique for linear systems as well as nonlinear systems by static and dynamic feedback namely as endogenous dynamic feedback. This method takes into account the non-linear behavior of the process while preventing complicated compu...
متن کاملOptimal Design of Axial Flux Permanent Magnet Synchronous Motor for Electric Vehicle Applications Using GAand FEM
Axial Flux Permanent Magnet (AFPM) machines are attractive candidates for Electric Vehicles (EVs) applications due to their axial compact structure, high efficiency, high power and torque density. This paper presents general design characteristics of AFPM machines. Moreover, torque density of the machine which is selected as main objective function, is enhanced by using Genetic Algorithm (GA) a...
متن کاملA Novel Intelligent Energy Management Strategy Based on Combination of Multi Methods for a Hybrid Electric Vehicle
Based on the problems caused by today conventional vehicles, much attention has been put on the fuel cell vehicles researches. However, using a fuel cell system is not adequate alone in transportation applications, because the load power profile includes transient that is not compatible with the fuel cell dynamic. To resolve this problem, hybridization of the fuel cell and energy storage device...
متن کاملField Oriented Control of Dual Mechanical Port Machine for Hybrid Electric Vehicle
A dual mechanical port machine (DMPM) is used as an electrically variable transmission (EVT) in hybrid electric vehicle (HEV). In the conventional HEV, this machine is replaced by a planetary gearbox and two electric machines and makes this structure simpler. This paper presents field oriented control (FOC) for DMPM. For HEV application, drive efficiency and wide operating speed range are impor...
متن کامل